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Summary. The method of isostationary functions, first introduced for linear 
Jahn-Teller problems within a single electronic term, is generalized to multimode 
and multilevel problems. Analytic expressions are obtained for the case of linear 
vibronic coupling of a general form, including both simply and non-simply 
reducible groups. It is shown that the static multimode Jahn-Teller problem for 
non-simply reducible groups can always be reduced to an ideal single-mode 
problem. 
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1 Introduction 

The method of the isostationary function l-l] provides a suitable tool for investigat- 
ing the topology of the potential energy surface in the vicinity of a Jahn-Teller (JT) 
instability [2]. In this method the usual representation of the surface in the space of 
nuclear configurations is mapped onto a projective representation in the space of 
electronic functions. In this space the isostationary function is defined as a very 
simple analytic function which has the same stationary structure as the JT poten- 
tial. It thus allows to derive exactly all extremal points of the actual energy sur- 
face, and forms the key to understanding the deep symmetry grounds of the JT 
topology, as expressed in the epikernel principle [1, 3]. 

Originally the method was derived for linear JT problems and successfully 
applied to the cases of fourfold and fivefold orbital degeneracies in icosahedral 
molecules [4, 5]. In the present paper two further results of a more general nature 
are reported. In Sect. 2 it is shown that the method of the isostationary function 
also holds for the more general Hamiltonian, which extends over a manifold of 
electronic states and contains second-order terms and multimode coupling. In 
Sect. 3 explicit expressions for the isostationary function are obtained in the most 
important  particular case of linear vibronic coupling of general form, including 
both simply and non-simply reducible groups. It is shown that the static multimode 
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Jahn-Teller problem for non-simply reducible groups can be reduced to a single- 
mode problem, exactly as in the case of simply reducible groups [2, 6]. In 
Sect. 4 these results are briefly discussed in the perspective of vibronic instabilities 
in the excited and ionic forms of C6o, where the Jahn-Teller effects are essentially 
multimode and extend over several quasi-degenerate states [7-17]. 

2 Generalization of the isostationary functions 

Consider the general case of vibronic coupling, described by the following Hamil- 
tonian: 

1 
u E~,c~,  + ~ E ~ + u(" H (~), = K ~ Q ~ r ~  + (1) 

i gF~' 

where the first term describes the energies of the electronic states, the second term is 
the elastic energy of the vibrations, and the last two terms are contributions of the 
first- (linear) and second-order vibronic coupling. The linear coupling part may be 
expressed explicitly as follows: 

H ( n =  E E va,Jr,~Jc~ (2) r t tF  ~-" F 7 ~L,#F 7 • 
#F 7 aij 

The index/~ counts repeated irreducible representations F of the vibrational modes. 
The linear coupling constants V are reduced matrix elements that link electronic 
levels i and j, characterized by corresponding irreducible representations Fi and F i, 
under vibronic coupling to the #F mode. They are independent of the mode 
component y. Finally C's denote electronic operators in the space of electronic 
states. Their matrix elements correspond to Clebsch-Gordan coefficients for the 
appropriate symmetry group [18-20]: 

<F,y,I C f-e~ I rj~j> = <F,?,IF~ rj~i >% (3) 

where 7~, ?j are components of the corresponding irreducible representations Fi, Fj. 
The superscript a in the above equations denotes repeating representations in 
the product Fi × Fj and can be dropped for simply reducible groups. The short 
notation C i stands for the unity operator, defined in the electronic space of the AI 

term Fi. 
The extremal points of the energy surfaces, which are eigenvalues of the 

Hamiltonian (1), can be found as solutions of the Oepik and Pryce equations 1-21]: 

8H({Q.rJ) 
¢t'1 ~ IV> =0,  (4a) 

(0)  H({e~r~})lW> = E({Q(fr),})IW>, (4b) 

<~[~t'> = 1, (4c) 

where ]q j > is a column vector describing the eigenfunction in the basis of electronic 
states, IFiy~>: 

Iv> = E E <, I r~,>. (5) 
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QuF~, can be From Eq. (4a) the values of nuclear coordinates in the extremal points, (o) 
expressed as functions of the electronic space coordinates, {x~,}. Upon substitution 
in Eq. (4b) one then obtains a system of non-linear equations in the x coefficients, 
subject to the normalization condition of Eq. (4c). The solution of this system yields 
the extremal configurations and hence the extremal points of the energy surface. In 
a further development the Oepik and Pryce conditions may be identified as the 
extrema conditions for a function in electronic space. This function simply corres- 
ponds to the average of H over I~ )  in the extremal points: 

</_/>(o} F,  , j {o) = ~x,,x,,<r,7,1I-I({O..r,})lFjTj>, (6) 
i j  ?iTi 

where a real electronic basis was supposed and Q(u°v)~ are conceived as functions of 
unknown parameters x~. In [-1] it was shown that the minimization of ( H )  (°) in the 
space of electronic functions indeed generates the Oepik and Pryce conditions in 
Eq. (3). The function thus has the same stationary structure as the adiabatic 
potential in Q-space, and is therefore denoted as the isostationary function. How- 
ever the proof in [1] was limited to the simple case of a linear Jahn-Teller problem 
associated with a single electronic term. We now proceed with a more general proof 
adapted to the arbitrary Hamiltonian in Eq. (1). To show the isostationary nature 
of ( H )  (°) we first minimize the following expression, 

<H) (°) - 2 E ~ (x~,) 2, (7) 

with respect to the coordinates x. The first term in Eq. (7) corresponds to the 
function (6), derived for the Hamiltonian (1). The second term was added in order 
to satisfy the normalization condition for the electronic function; 2 is the corres- 
ponding Lagrange multiplier. Minimization of Eq. (7) leads to the following set of 
equations: 

1 
2x{~<r~7~lH({Q(,%})lrjTj> +-Y,Y,x,,x,,< ,7, - = 

(a) 

where k runs through the entire electronic manifold. In deriving this result use was 
made of the hermiticity of the Hamiltonian. The second term on the left-hand side 
of Eq. (8) can be presented as follows: 

Z I Z 2  x',,x~,<V,~',l °I-I({e"r'}) \-]'°'aQ'fr~' 

The expression contained within the brackets in Eq. (9) is nothing but 

i r, F 
which vanishes in the extremal points in conformity with Eq. (4a). Accordingly, 
Eq. (8) becomes 

J7i 

which coincides with Eq. (4b). 

(10) 
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This completes the proof that the minimization of the expression (7) is con- 
sistent with the Oepik and Pryce equations (4). We thus have shown that the 
isostationary function also is defined in the case of a more general vibronic 
Hamiltonian, involving non-linear and multimode coupling over several electronic 
states. The analytic form of this function can be obtained by solving the system of 

r~(o) For the Hamiltonian (1) these equations are equations (4a) with respect to ~.r~. 
always linear. In the absence of second-order coupling this system can easily be 
solved to yield simple expressions in the coordinates x. A further examination of 
this simplified case is presented in the next section. 

3 Multimode and multiterm linear vibronic coupling 

By dropping the H ¢2) term, Eq. (1) reduces to the linear JT Hamiltonian in a 
multimode and multiterm system. To obtain the isostationary function in this case, 
we first derive the stationary coordinate expressions, using Eq. (4a). 

lzaij 
t~(o) (11) ~,ur~, E 2 @  - ~  i j a = - x~, x~ (Fi 7i] F7 FjT~ ) . 

By inserting these coordinates in 
o n c e :  

(H)(°) = ~ i R ~ l  -- 
i 

where the R coefficients denote 

Eq. (6), the isostationary function is obtained at 

[- iyaij gblm'- ] 
1 VX-" V IV  - , r  u r  [K'laaiJRblrn (12) 

~ Z _ , l Z . ,  ~--- l~*'r~ r~, 
V aijblmL# a~'#F J ? 

tensors in electronic space: 

i j F "'r~aiJ= £x ,x , ,< r ,~ i l r  ~ ~ > .  (13) 
7~Y~ 

Equation (12) is a generalization over the multimode and multilevel case of the 
12~aij isostationary function introduced in Ref. [1]. The expressions *-v~ are bilinear 

combinations of x coordinates, transforming as irreducible representations 
F under symmetry transformations of the point group. By summing over 7 in 
Eq. (12) one realizes a totally symmetric convolution of these functions. This confirms 
that the isostationary function is an invariant of the point group. 

The result further indicates that the multimode aspect of the Hamiltonian does 
not really represent a complication, since the individual mode contributions are 
absorbed by an inner sum over/~. This is not surprising since the isostationary 
function represents a projection in electronic function space and therefore inte- 
grates the coupling strengths of the individual modes. 

In the space of normal coordinates the situation is less straightforward. For the 
case of a single electronic term in a group with no product multiplicities it is known 
that the coordinate space can be divided into one interacting mode of each 
symmetry type and a remainder space of non-JT coordinates. Hence in this case 
the multimode effect essentially reduces to the ideal JT effect, at least as far as the 
adiabatic surface is concerned. In general though such a simplification will no 
longer be possible. 

To illustrate this, we first pass to frequency-weighted nuclear coordinates, 
following Toyozawa and Inoue [22]. 

qur, = x ~ u r  Our,- (14) 
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In this way the harmonic energy operator in Eq. (1) is transformed to an isotropic 
form. A further coordinate transformation is now introduced in the frequency- 
weighted vibrational space of each symmetry type F: 

1 I /a i j  
~aij  : ~ ~ v uF (15)  
tlF? ~'aij Z., ~ qurr. 

Z F  # N/ /~#F 

The normalization coefficients in Eq. (15), F~', are given by the following equation, 

F .. -11/2 
"' 1 ~ (  ,,J2 [ (16) F~ ~j = V ur) /K~r  , 

I_i t  J 

and represent effective linear vibronic constants in the frequency-weighted space, 
corresponding to the a-type coupling of the terms F~ and Fj by the vibrations q,r~- 
Hence each different scheme F~ x Fj that can be realized in the multilevel manifold 
will give rise to a set of effective coordinates spanning the entire F~ x Fj product 
representation. In principle the number of effective modes of type F will thus be 
equal to the number of times F occurs in the symmetrized direct product of the 
reducible representation of the total manifold. However all these effective modes 
need not be orthogonal to each other. In fact their mutual overlap is easily 
calculated: 

him / ~ai j  [ ~ b l m \  1 S~ij (F) - \ur~ I,lr~ / - ~aij-~-~t-~ ~ -,rr/~iJ --,rTZblm/~'/~ur • (17) 
~ F  ~ F g 

As a result it may well be possible to project out a number of inactive modes by 
applying unitary transformations within subspaces of all modes of a given sym- 
metry type according to standard procedures. In this way one can obtain an 
effective vibronic Hamiltonian with a minimal number of active modes. We have 
to accept though that - unlike in the case of a single level in a simple reducible 
group - this number may be larger than one per allowed symmetry representation. 
In the next section this will be illustrated for the case of a single level system in 
a non-simply reducible group. 

4 Examples 

Buckminsterfullerene is characterized by a fivefold degenerate H O M O  transform- 
ing as the Hu representation in the icosahedral point group. The L U M O  and 
next-LUMO are both threefold degenerate and transform respectively as Tlu 
and Tlg [10]. These high degeneracies give rise to several new and interesting 
JT problems. The cationic ground state, C~o, exemplifies the muttimode 
ZH u x (2ag -t- 6gg + 8hg) system, which has a product multiplicity in the hg modes. 
The anionic ground state, C6o, should in principle be described by a multimode 
multilevel system of the type (2Tlu + 2Tlg) x (2ag + 8hg -I- au + 4hu + 7hu). Finally 
vibronic interactions in the excited state of the neutral molecule are even more 
involved since they combine the cationic and anionic instabilities. All these prob- 
lems are at the focus of intense research activity [7-17], and the isostationary 
function method in its multimode and multilevel form proves to be a powerful tool 
to explore the topology of these complicated JT surfaces. As an example, in a recent 
paper we have analysed the 2Tlu + 2Tlg problem of the fulleride C6-o, using 
precisely the functional expressions of Eq. (12) [23]. It was found that this problem 
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may exhibit high symmetries that can be described by generalized rotation 
groups. 

Here we will briefly investigate the multimode/-/x (nh) problem as an example 
of the use of the isostationary function in a non-simply reducible group under 
multimode coupling. 

Since the h representation appears twice in the H x H product there are two 
effective qfi~ sets in the frequency-weighted vibrational space, which we will denote 
as q ~  and q~ .  Their overlap is given by 

1 " __Z " b = V~n V,n /K,n .  (18) s (H) 1 

In all these symbols we have omitted the repeating H x H upper indices. In the 
space of h modes we can now carry out a unitary transformation to c] coordinates, 
as defined below: 

c~n~ ~ n (19) 
~ = 1  

Let the effective coordinates q~r7 and q ~  be described by unit vectors qlu~ and 
q2u~, i.e. 

q ~  = cos ~ C]ln~ + sin e q2n~ 

q~r~ = cos fl ~lu~ + sin fl ~12n~, (20) 

where the direction cosines are largely arbitrary except for the requirement 

c o s ( e  = 

The vibronic Hamiltonian may then be expressed as follows: 

1 u 
H ~ Z  " 2 =  Z q,n~ + Z [(Fna cos e C~, + F~ cos fl C~)  qlg~, 

v = l  ? 

+ (F~r sine C~, + F~ sinfl C~,) q2~/,]. (21) 

This expression clearly indicates that the coordinate space is now divided in a 
non-active harmonic part {q,n,}, v = 3, . - . ,  n and a JT active part {cirri,}, v = 1, 2. 
Unlike in simply reducible groups, this active part now contains two modes instead 
of one. The equilibrium values of these modes are given by 

= a a __ FnRn~, g1(1~ - - c o s e F n R n ~  cosfl b b 

c~(o) = sinc~F~R~ sinfl b b (22) 2 H ' ;  - -  - -  Fn RnT. 

By inserting these values in ( H )  we immediately obtain the isostationary 
function: 

1I ( H )  (°) = -- ~ (FS) 2~(R~,) 2 + (F~r) 2 ~(Rbnr) z + 2 F n F n S a ( H ) ~ R n , R n ,  . 

(23) 

Using the appropriate substitution for F and S symbols as given in Eqs. (16) and 
(18), one verifies that this result exactly coincides with the general expression for the 
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isostationary function, as given in Eq. (12). The R ~  and R ~  tensors are found to be 
orthogonal, which implies that the cross product in Eq. (23) vanishes: 

a b 
RIjTRn~ = O. 

7 

This is a general result for the coupling in a single level, which originates from 
the properties of the corresponding Clebsch-Gordan coefficients. Indeed the rank 
of the matrix described by these coefficients always equals the multiplicity of the 
product involved [24]. Hence coupling coefficients, corresponding to different 
branches a and b in the same product decomposition, can always be chosen to be 
orthogonal under the inner sum over 7 in the cross product. In consequence the 
isostationary function further reduces to 

= - -  - -  a 2 . )2 + (Fb)2 Z(Rn,  (H)(°) 2 Fn) ~,(RH7 
L 7 7 

Essentially the same function appears when examining the ideal H x (g + 2h) JT 
problem in the single mode limit [5]. This illustrates that the method of the 
isostationary function completely integrates the multimode effect, even if the 
coordinate space representation cannot be reduced to an ideal system. 

5 Conclusions 

In this paper the method of the isostationary function is generalized to Hamil- 
tonians that deviate from the ideal JT case. In addition an analytic expression 
for the isostationary function is derived for the important case of linear 
vibronic coupling. This function is of a general form and allows the full descrip- 
tion of the topology of energy surfaces by means of Eqs. (12), (13) and (11), 
provided the corresponding coupling and force constants are known. It is 
shown that the multimode vibronic coupling requires some additional para- 
meters to describe the topology of extremal points. The minimal number of these 
parameters and their expression through the parameters of the vibronic Hamil- 
tonian are established by Eq. (12). The linear multimode vibronic problem within 
a single electronic term for both simply and non-simply reducible groups is 
equivalent to the one-mode problem as far as the topology of extremal points is 
concerned. 

The inclusion of quadratic vibronic coupling leads to small changes of the 
energy surfaces in accordance with much smaller values of quadratic vibronic 
constants as compared with zeroth-order force constants [2J. The main effect of 
quadratic coupling thus consists in a symmetry lowering of the adiabatic potential 
through the warping of energy surfaces obtained within the linear approximation 
[-2, 6J. This effect can usually be taken into account by adding second-order 
perturbation terms to the isostationary function. 

The present theory proves to be especially useful in the treatment of complex 
vibronic problems, such as appear in the study of fullerene compounds. 
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